Quantum Hypercomputation—Hype or Computation?
نویسندگان
چکیده
A recent attempt to compute a (recursion–theoretic) non–computable function using the quantum adiabatic algorithm is criticized and found wanting. Quantum algorithms may outperform classical algorithms in some cases, but so far they retain the classical (recursion–theoretic) notion of computability. A speculation is then offered as to where the putative power of quantum computers may come from. ∗HPS Department, Indiana University, Bloomington, IN, 47405. [email protected] †Philosophy Department, University of BC, Vancouver, BC. [email protected]
منابع مشابه
The case for hypercomputation
The weight of evidence supporting the case for hypercomputation is compelling. We examine some 20 physical and mathematical models of computation that are either known or suspected to have super-Turing or hypercomputational capabilities, and argue that there is nothing in principle to prevent the physical implementation of hypercomputational systems. Hypercomputation may indeed be intrinsic to ...
متن کاملComputing a Turing-Incomputable Problem from Quantum Computing
A hypercomputation model named Infinite Square Well Hypercomputation Model (ISWHM) is built from quantum computation. This model is inspired by the model proposed by Tien D. Kieu [1] and solves an Turing-incomputable problem. For the proposed model and problem, a simulation of its behavior is made. Furthermore, it is demonstrated that ISWHM is a universal quantum computation model.
متن کاملHypercomputation based on Quantum Computing
Abstract. We present a quantum algorithm for a (classically) incomputable decision problem: the Hilbert’s tenth problem; namely, we present a hypercomputation model based on quantum computation. The model is inspired by the one proposed by Tien D. Kieu. Our model exploits the quantum adiabatic process and the characteristics of the representation of the dynamical algebra su(1, 1) associated to ...
متن کاملHypercomputation and the Physical Church-Turing Thesis
A version of the Church-Turing Thesis states that every effectively realizable physical system can be defined by Turing Machines (‘Thesis P’); in this formulation the Thesis appears an empirical, more than a logico-mathematical, proposition. We review the main approaches to computation beyond Turing definability (‘hypercomputation’): supertask, non-well-founded, analog, quantum, and retrocausal...
متن کاملHypercomputation with quantum adiabatic processes
Despite the recursive non-computability of Hilbert’s tenth problem, we outline and argue for a quantum algorithm that is based on the Quantum Adiabatic Theorem. It is explained how this algorithm can solve Hilbert’s tenth problem. The algorithm is then considered in the context of several “no-go” arguments against such hypercomputation. Logical arguments are usually based on Cantor’s diagonal t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007